Automobile
An automobile is a wheeled vehicle that carries its own motor. Different types of automobiles include cars, buses, trucks, and vans, with cars being the most popular by far. Older terms include horseless carriage and motor car, with motor referring to what is now usually called the engine. The act of operating an automobile is called driving. An automobile has seats for the driver and, almost without exception, one or more passengers.
History
Automobile
history eras | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
It is generally claimed that the first automobiles with gasoline-powered internal combustion engines were completed almost simultaneously in 1886 by German inventors working independently: Carl Benz on 3 July 1886 in Mannheim, resp. Gottlieb Daimler and Wilhelm Maybach in Stuttgart (also inventors of the first motor bike) and Austrian inventor Siegfried Marcus in Vienna.
Steam-powered self propelled vehicles were devised in the late 18th century. Nicolas-Joseph Cugnot successfully demonstrated such a vehicle as early as 1769. The first vehicles were steam engine powered; probably the most notable advances in steam power evolved in Birmingham, England by the Lunar Society. It was here that the term Horsepower was first used. It was in Birmingham also that the first four wheel petrol-driven automobiles were built in Britain in 1895 by Frederick William Lanchester who also patented the disc brake in the city. Electric vehicles were produced by a small number of manufacturers.
Popularity
Cugnot's invention initially saw little application in his native France, and the center of innovation passed to Great Britain, where Richard Trevithick was running a steam-carriage in 1801. Such vehicles were in vogue for a time, and over the next decades such innovations as hand brakes, multi-speed transmissions, and improved speed and steering were developed. Some were commercially successful in providing mass transit, until a backlash against these large speedy vehicles resulted in passing laws that self-propelled vehicles on public roads in the United Kingdom must be preceded by a man on foot waving a red flag and blowing a horn. This effectively killed road auto development in the UK for most of the rest of the 19th century, as inventors and engineers shifted their efforts to improvements in railway locomotives. The red flag law was not repealed until 1896.
The many varieties of automobile racing collectively constitute one of the most popular categories of sport in the world. Today, the USA has more cars than any other nation. Though Japan is a leading nation in car manufacturing, the average Japanese citizen cannot afford the high costs of running a car in a country where parking space is scarce and fuel is very expensive.
There are offers to get a new car for free or get paid to drive them in return for displaying advertisement on the cars, and hence only available to individuals of certain profiles.
Innovation
The first automobile patent in the United States was granted to Oliver Evans in 1789; in 1804 Evans demonstrated his first successful self-propelled vehicle, which not only was the first automobile in the USA but was also the first amphibious vehicle, as his steam-powered vehicle was able to travel on wheels on land and via a paddle wheel in the water.
On November 5, 1895, George B. Selden was granted a United States patent for a two-stroke automobile engine ( U.S. Patent 549160. This patent did more to hinder than encourage development of autos in the USA. A major breakthrough came with the historic drive of Berta Benz in 1888. Steam, electric, and gasoline powered autos competed for decades, with gasoline internal combustion engines achieving dominance in the 1910s.
The large scale, production-line manufacturing of affordable automobiles was debuted by Oldsmobile in 1902, then greatly expanded by Henry Ford in the 1910s. Early automobiles were often referred to as 'horseless carriages', and did not stray far from the design of their predecessor. Through the period from 1900 to the mid 1920s, development of automotive technology was rapid, due in part to a huge (hundreds) number of small manufacturers all competing to gain the world's attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910-1911), independent suspension, and four-wheel brakes.
By the 1930s, most of the technology used in automobiles had been invented, although it was often re-invented again at a later date and credited to someone else. For example, front-wheel drive was re-introduced by Andre Citroën with the launch of the Traction Avant in 1934, though it appeared several years earlier in road cars made by Alvis and Cord, and in racing cars by Miller (and may have appeared as early as 1897). After 1930, the number of auto manufacturers declined sharply as the industry consolidated and matured. Since 1960, the number of manufacturers has remained virtually constant, and innovation slowed. For the most part, "new" automotive technology was a refinement on earlier work, though these refinements were sometimes so extensive as to render the original work nearly unrecognizable. The chief exception to this was electronic engine management, which entered into wide use in the 1960s, when electronic parts became cheap enough to be mass-produced and rugged enough to handle the harsh environment of an automobile. Developed by Bosch, these electronic systems have enabled automobiles to drastically reduce exhaust emissions while increasing efficiency and power.
Model changeover and design change
Cars are not merely continually perfected mechanical contrivances; since the 1920s nearly all have been mass-produced to meet a market, so marketing plans and manufacture to meet them have often dominated automobile design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one firm, so that buyers could "move up" as their fortunes improved. The makes shared parts with one another so that the larger production volume resulted in lower costs for each price range. For example, in the 1950s, Chevrolet shared hood, doors, roof, and windows with Pontiac; the LaSalle of the 1930s, sold by Cadillac, used the cheaper mechanical parts made by the Oldsmobile division.
He also conceived of the notion of the yearly model change-over, which became a three-year cycle. In the second year of the cycle, the superficial appearance of the cars changed incidentally; for the third, major changes took place, e.g., the fender dies for the 1957 Chevrolet had to be modified to produce thin, pointed fins and squarish headlamp housings. In the next cycle, the doors, roof, trunk, and often the suspension would have to be redesigned. Factories and the yearly work schedule had to be specialized to accommodate these changeovers.
Such a patterns became dominant for the Big Three automakers in the US, though European firms neither amalgamated nor could afford the changeover. After the 1950s, when American firms tackled the technical problems of high-compression V-8 engines, automatic transmissions, and air conditioners, investment shifted to meeting the market for non-technical matters. This was criticized as "planned obsolescence," although by this it was meant that the car would simply be made to go out of style rather than really being technically surpassed. For example, only those few American cars of the 1960s with front-wheel drive or a rear engine had a fully independent rear suspension because the Hotchkiss drive was cheaper, and people were used to it. Such malinvestment left American firms unprepared for the Oil Crisis of the 1970s and the rise of imported luxury cars in the 1980s.
Regulation
In almost every nation, laws have been enacted governing the operation of motor vehicles. Most of this legislation, including limits on allowable speed and other rules of the road, are designed to ensure the smooth flow of traffic and simultaneously protect the safety of vehicle occupants, cyclists, and pedestrians.
In 1965, in California, legislation was introduced to regulate exhaust emissions, the first such legislation in the world. Answering this new interest in environmental and public safety issues, the Department of Transportation (DOT) and the Environmental Protection Agency (EPA) both introduced legislation in 1968 which substantially altered the course of automotive development. Since the US market was the largest in the world (and California the largest market in the US), manufacturers worldwide were forced to adapt. For the first time, safety devices were mandatory, as were controls on harmful emissions. Prior to this legislation, even seat belts were considered extra-cost options by many manufacturers. Other countries followed by introducing their own safety and environmental legislation. In time, meeting regulations became the main challenge for the engineers designing new cars. In the decade from 1975 to 1985, the world's manufacturers struggled to meet the new regulations, some producing substandard cars with reduced reliability as a result. However, by the end of this period, everyone had learned how to handle the newly regulated environment. The manufacturers discovered that safety and environmentalism sold cars, and some began introducing environmental and safety advances on their own initiative.
Environmental improvements
Among the first environmental advances are the so-called alternative fuels for the internal combustion engine, which have been around for many years. Early in automotive history, before gasoline was widely available at corner pumps, cars ran on many fuels, including kerosene (paraffin) and coal gas. Alcohol fuels were used in racing cars before and just after World War II. Today, methanol and ethanol are used as petrol extenders in some countries, notably in Australia and the United States. In countries with warmer climates, such as Brazil, alcohol derived from sugar cane is often used as a substitute fuel.
In many countries, plentiful supplies of natural gas have seen methane sold as compressed natural gas (CNG) and propane sold as liquified petroleum gas (LPG) alongside petrol and diesel fuels since the 1970s. While a standard automotive engine will run on these fuels with very low exhaust emissions, there are some performance differences, notably a loss of power due to the lower energy content of the alternative fuels. The need to equip filling stations and vehicles with pressurized vessels to hold these gaseous fuels and more stringent safety inspections, means that they are only economical when used for a long distance, or if there are installation incentives. They are most economical where petrol has high taxes and the alternative fuels do not.
Alternative fuels and batteries
With heavy taxes on fuel, particularly in Europe and tightening environmental laws, particularly in California, and the possibility of further restrictions on greenhouse gas emissions, work on alternative power systems for vehicles continues.
Diesel-powered cars can run with little or no modification on 100% pure biodiesel, a fuel that can be made from vegetable oils. Many cars that currently use gasoline can run on ethanol, a fuel made from plant sugars. Most cars that are designed to run on gasoline are capable of running with 15% ethanol mixed in, and with a small amout of redesign, gasoline-powered vehicles can run on ethanol concentrations as high as 85%. All petrol fueled cars can run on LPG. There has been some concern that the ethanol-gasoline mixtures prematurely wear down seals and gaskets. Further, the use of higher levels of alcohol require that the automobile carry/use twice as much. Therefore, if your vehicle is capable of 300 miles on a 15-gallon tank, the efficiency is reduced to approximately 150 miles. Of course, certain measures are available to increase this efficiency, such as different camshaft configurations, altering the timing/spark output of the ignition, or simply, using a larger fuel tank.
In the United States, cars in the 1890s used ethanol, an alcohol fuel; petrol (called gasoline in the U.S. and Canada) and diesel engines were implemented later. Many U.S. farmers continued to make their own alcohol fuel in corn-alcohol stills until Prohibition criminalized the production of alcohol in 1919. Brazil is the only country which produces ethanol-running cars, since the late 1970s.
Attempts at building viable battery-powered electric vehicles continued throughout the 1990s (notably General Motors with the EV1), but cost, speed and inadequate driving range made them uneconomical. Battery powered cars have used lead-acid batteries which are greatly damaged in their recharge capacity if discharged beyond 75% on a regular basis and NiMH batteries.
Current research and development is centered on "hybrid" vehicles that use both electric power and internal combustion. Other alternatives being explored, involve methane and hydrogen-burning vehicles using fuel cells, and even the stored energy of compressed air (see Air Engine).
Safety
Accidents seem as old as automobile vehicles themselves. Joseph Cugnot crashed his steam-powered "Fardier" against a wall in 1770. The first recorded automobile fatality was Bridget Driscoll on August 17, 1896 in London and the first in the United States was Henry Bliss on September 13, 1899 in New York City.
Every year more than a million people are killed and about 50 million people are wounded in traffic (according to WHO estimates), either by crashing into something, or by being crashed into. Cars also cause innumerable injuries and deaths among millions of animals (see roadkill). Major factors in accidents include driving under the influence of alcohol or other drugs, inattentive driving, overtired driving, road hazards such as snow, potholes and animals, and reckless driving. Special safety features have been built into cars for years, some for the safety of car's occupants only, some for the safety of others.
Cars have two basic safety problems: They have human drivers who make mistakes, and the wheels lose traction near a half gravity of deceleration. Automated control has been seriously proposed, and successfully prototyped. Shoulder-belted passengers could tolerate a 32G emergency stop (reducing the safe intervehicle gap 64-fold) if high-speed roads incorporated a steel rail for emergency braking. Both "safety" modifications of the roadway are thought to be too expensive by most funding authorities, although these modifications would dramatically increase the number of vehicles that could safely use a high-speed highway.
Early safety research focused on increasing the reliability of brakes, and reducing the flammability of fuel systems. For example, modern engine compartments are open at the bottom so that fuel vapors, which are heavier than air, drain to the open air. Brakes are hydraulic so that failures are slow leaks, rather than an abrupt cable-parting. Systematic research on crash safety started in 1958 at Ford Motor Company. Since then, most research has focused on absorbing external crash energy with crushable panels, and reducing the motion of human bodies in the passenger compartment.
There are standard tests for safety in new automobiles, like the EuroNCAP and the US NCAP tests (http://www.carsdirect.com/encyclopedia/buying-a-safer-car). There are also tests run by organizations backed by the insurance industry (IIHS for instance at http://www.hwysafety.org/).
Despite technological advances, the death toll of car accidents remains high: about 40,000 people die every year in the US, a number which increases annually in line with rising population and increased travel (although the rate per capita and per mile travelled decreases steadily), with similar trends in Europe. The death toll is expected to nearly double worldwide by 2020. A much higher number of accidents result in injury or permanent disability.